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Abstract 

Simulations of the beam-beam interaction have shown chaotic motion in 

2-D simulations and have shown beam blow-up with chaotic motion in simula- 

tions with tune modulation. [l-13] A simple resonance model is developed 

to analyze these results. The density of chaotic motion in the former cases 

are accurately estimated by the calculated resonance overlap area of low 

order resonances. In the latter cases, "beam blowup" is found to occur 

when the modulation subresonances of a low order resonance intersect. Other 

simulation features are compared with the resonant model. We conclude that 

this resonance model with application of resonance overlap conditions similar 

to the "Chirikov" criterion [14] is useful in predicting beam response in the 

multidimensional beam-beam interaction with tune modulation. 

IA. Summary of Simulation Results 

In previous notes and papers [l-13], we have presented results of 

simulations of the beam-beam interaction. Some features of these simulations 

are sunarized in this section. 

The basic procedure in these simulations was the propagation of 

a set of particle trajectories through many turns of the collider. Transport 

around one turn is simulated as the product of two matrix multiplications in 

both (x and y) transverse dimensions: 
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The first matrix represents the linear focusing transport about 

the ring and is determined by the transverse tunes (vx,vy) and "betatron" 

functions ~,,a~. We choose 8, = By = 8, = 2 m, simulating pp collisions. 

The second matrix is the non-linear beam-beam interaction caused by 

passage through the electromagnetic field of the opposite beam bunch in a 

collision region. The opposite bunch is approximated by a round "gaussian" 

shaped beam of RMS size d which is unchanged from turn to turn so that: 

-(xzg2) 

F x 1-e 
2a 

(x2+y2)/2 * a 

(1) 

X 

0 " before 

(2) 

AV, the "beam-beam tune shift", determines the strength of the interaction, 

and we choose IJ = .0816 mm to duplicate pp collider values.[15] The 

simulation procedure approximates conditions in a pp collider: "zero-length" - 

"weak-strong" 2-D collisions of round beams without "synchrotron radiation". 

Collisions are "weak-strong" since the opposite "strong" beam is unchanged 

from turn to turn as in the collisions of a lower density p bunch with protons, 

and "zero-length" in that collisions are approximated by a simpie velocity 

change (Bunches are short compared to the storage ring circumference.). 

Tune modulation is an important process in i;p colliders and is 

simulated by changing the tunes from turn to turn following: 
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“X =U +a 
x0 x sin N 

i ) 

22, 
X 

2n 
\)Y 

= uyo + ay sin 5 n ( ) 
(3) 

where a,, ay are the modulation amplitudes,Nx, Ny are the modulation periods 

and n is the turn number. In our modulation simulations we choose ax = *ay 

and vary No = Nx = N . 
Y 

We note that No a 1000 is near the expected modula- 

tion frequencies of "power supply ripple" and "uncorrected chromaticity". 

ax, ay are chosen ,< AV = .Ol in agreement with expected collider magnitudes. 

In a typical simulation initial positions for a set of 100 tra- 

jectories are chosen randomly from a 4-D gaussian phase space distribution 

determined by 8, and a and tracked through many thousands or millions of 

turns. Individual trajectories are inspected for significant changes, as well 

as RMS amplitudes for the particle set, the x and y "emittances": 

(4) 

and their RMS sums: cR 5 6&-7 s 

In previous publications and internal reports we have reported 

results of these simulations for a variety of cases corresponding to different 

simulation conditions. In the next two sections we summarize some features 

of these results related to the following theoretical model. 

1B Chaotic Motion and the "2-D" Beam-Beam Interaction 

Our simulations have determined that large numbers of "chaotic" tra- 

jectories can occur in simulations of the 2-D beam-beam interaction [5,9,11] 

under certain conditions described below. We have used a "reversability" test 

as an empirical tool in separating "chaotic" from "non-chaotic" motion. In 

this test an individual particle trajectory is tracked forward in time for 
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many turns. The motion is then reversed by reversing the velocity and 

the matrices determining the motion. Forward and return positions are 

compared. 

Figure 1 shows results of reversability tests for sample tra- 

jectories (vx = .245, vy = .12, Av = .Ol) with 60 million turns forward and 

return (120 million turns total). Initial and final positions agree to 

14 decimal places in a double precision test (10s2* error in one turn). 

Similar results are obtained in our simulation for all "normal" non- 

chaotic trajectories, and this indicates the amount of normal accumulated 

error in our simulations. 

Reversability tests of some other trajectories show substantially 

different behavior, and a typical case is shown in Figure 2. These tra- 

jectories, which we label "chaotic", develop errors of order 1 in a few 

tens of thousands of turns in an exponential manner. 

In "normal" trajectories, errors 6 grow as simple powers of the 

number of turns N 

where 6. is a single turn error size (lo-*') and a 5 2 in our simulations. 

"Chaotic" trajectory errors grow exponentially 

where a is identifiable with the "Lyapunov exponent" of the trajectory and 

depends on the details of the transformation. In a typical beam-beam case 

described below a = O(10w3). 

We have reported results of a systematic search for chaotic motion 

in 2-D simulations[9,11]as functions of vx, v 
Y 

, AV and now summarize these 

results. We find that chaotic motion occurs when the "tune spread" Av 
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contains the intersection of low order resonances. A resonance is determined 

by a relationship between the tunes 

mvX +nv =p 
Y 

where m, n and p are integers and our symmetry requires that m and n be even 

(or zero). The order R of the resonance is R = Irnl f Inl. 

The dependence of chaotic motion on resonance order is shown in 

Figure 3. In each case the resonance intersection is placed in the center of 

the tune spread and 100 trajectories are tested for chaotic motion by a re- 

versability test. The results are: 

1. Intersections of 4th and 6th order resonances show large regions 

of chaotic motion (lo-30%). 

2. Intersections of 4th or 6th order with 8th order also show 

some chaotic motion (5 5%). 

3. Higher order intersections show little or no chaotic motion 

(2 1%). 

4. Cases with vx = vy (or vx = vy k.5) show x chaotic motion. 

These cases have a kinematic invariant (p, = xy'-yx' in these cases) which, 

with the energy invariant, makes the motion integrable. This reduces the 

motion to 1-D with diminished "chaotic" behavior.[l6] 

Dependence on Av has also been explored by varying Av from .005 

to .02. The density of chaotic motion shows no dependence on Av; however 

the mean Lyapunov exponent a is directly proportional to 6~. 

The 2-D motion shows no RMS amplitude instability even in a very 

long time scale simulation (120 million turns)[3,4]. This indicates that 

the appearance of chaotic motion need not lead to RMS amplitude instability. 
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1C Results of Simulations with Tune Modulation 

We have also completed several studies of the beam-beam interaction 

with tune modulation and now summarize some results of these simulations. We 

have found that tune modulation can lead to large numbers of chaotic tra- 

jectories and to "beam blow-up" if the modulation[7,13] carries the beam 

across low order resonances. Figure 4 shows the modulation in a case 

(vx = .3439, 'jy = .1772, AV = .Ol, ax = -ay = .005) which carries the beam 

across sixth order resonances. At N = 1000, -50% of the orbits are chaotic 

and a fast beam blow-up occurs with a mean growth time of -25,000 turns. 

This case has been studied in greater detail by varying the modula- 

tion period N from 8 up to 100,000 [10,13]. Some of the results are displayed 

in Figure 5. We see no chaotic motion for N < 32. For 32 < N < 200 a few chaotic 

trajectories appear without beam blow-up. For N j 200 chaotic motion accompanied 

by "fast" beam blow-up occurs. 

As N + m, the existence of chaotic motion with RMS emittance growth 

appears to persist. The fraction of phase space containing chaotic motion 

remains approximately constant but the Lyapunov exponents and the RMS emittance 

growth rates decrease as N + m. 

2. Resonances and Resonance Overlap: Comparison of Theoretical Model 

Results and Simulations 

In the following sections we describe calculations of resonance 

locations and widths in the 2-D beam-beam interaction. A resonance 

overlap criterion is used to estimate the area of "chaotic" motion, 

and the Lyapunov exponents are compared with resonance oscillation frequencies. 

The resonance model is extended to include tune modulation and a 

modulation subresonance overlap criterion for modulational "blow-up". The 

characteristics of this blow-up are compared with the features of the theoretical 

model. Useful predictions for future colliders are obtainable. 
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2A The Beam-Beam Hamiltonian and the Action Angle Formalism 

The matrix multiplications of Equation (1) are equivalent to 

integration of the following equations of motion: 

x" + kx(s)x = 

Y " + ky(s)y = )Y 6 (5.1 
' 

(5) 

where 6,, AV are the interaction region C-S betatron amplitudes [17] and beam-beam 

tune shift, r2 = x2+y2, Am is a periodic delta function representing the 

short distance beam-beam crossing, and kx(s), ky(s) are periodic focusing functions 

representing the storage ring. s, the distance traveled along the ring, is the 

independent variable. The beam-beam interaction is that due to a "strong" beam 

with a gaussian density: 

p(r) = p e-r2/202 _ Ntot e-r2/02 . -- 
0 

2n02 

The nonlinear beam-beam force can be rewritten as the gradient 

of a potential function 

2 
x" f kx(s)x = -4nAv 0 

B 
0 

-& U(X,Y) 6pb) 

where 

r2/202 
u= 

I 

1-e-t dt 
t 0 

(6) 

(7) 

I E. r2 
in 

( ) 202 
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where Ein(u) is the "exponential integral function" (see Abramowitz and 

StegunIl51,p. 228). It has the power series representation 

Ein(u) = y w . 

1 

For large u, this approaches 

(8) 

El,,(u),' .5772 + log(u) 

where log is the natural logarithm. 

The Hamiltonian corresponding to these equations of motion is: 

H = ;(px2+kx(s)x2) f ;(py2'ky(s)y2) 

+ y a2 U(x,y) m(s). 
0 

(9) 

The Hamiltonian can be transformed into action-angle coordinates 

by the generating function 

X2 
G(x,Yv+,,~~) = - 28, 

c 

B;(s) 
tan@, -2 

3 

-ic 1 w 
Y 

taney- 2 
I 

@X = $x + 

where @ 
Y 

is given by the same equation as ox with the exchange af x for y. 

After the canonical transformation and a change of independent 

variable from s to a = s/R, we find 

(10) 

H = vxIx + v I 
YY 

+ sp(eM ‘J(x,Y) (11) 
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with 

A=*o2 
n and x = )12I,cos$, 
=0 

(note that with round beams B, = By = Bo). 

Expansion in Fourier series obtains: 

Up(e) = & 1 fmn(Ix.Iy)e 
i(m+,+wy-pe) 

m,n,p 
(12) 

where 

fmn(Ix~Iy) = 
*a 2n 

1 

--i I w2 o o 
d+X day e 

-ihwx+wy) 

(13) 

' Ein 

Our new Hamiltonian is 

i 

BoIx cos2 '$x+BoI cos2 '$ 

2 0 y, . 

H(I,@,e) = vxIx + u I 
YY 

f 
+ A 1 -jf tIx.Iy) e 

i(wx+wy-Pe) 

The average "tune" as a function of Ix, y I can be obtai,ned by ignoring the 

time varying part of (14): 

(14) 

(15) 
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g, is a function of the amplitudes with values between 0 and 1 and is 

displayed graphically in Figure 6. Note that: 

g, z gy for most I x+ 

also: 
9X 

+las I x and I + 0 
Y 

g, + 0 as Ix or I 
Y 

+ m. 

2B The Hamiltonian in the Resonance Approximation 

A resonance is obtained where 

mGx tn; =P 
Y (16) 

with m, n, p integers. In the resonance approximation we keep only the 

lowest order resonant terms of H. 

H=vI xxfV1 YY 

(17) 

A Af 

+ zi foe + + cos(m$x+n$y- pe). 

The time variable can be removed from (17) by transforming to new variables 

*x = $x - vxoe 

where v xo, vyo are resonant tunes within the tune spread with 

mv 
x0 + nvyo = p 
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H = (vK-vxo)Ix t (vy-~yo)Iy 

(18) 

+Af 2n 00 
+Af 

n mn 
cos(m*xtn*y). 

This can be transformed into resonance coordinates by 

It _ mlx+nly 
d&7 

(19) 

nix-mix 

I- =&%7 

*- _ nQx-m$y . 
J&F 

The new Hamiltonian is: 

R =& (m(~x-uxo)tn(Yy-~yo ,)I' 

1 

+I/- n2tm2 
( n(vx-vxo ) - m(vy-uyo))IS (20) 

Af Af 
tOOt"" cos( p- *Y. n tm 

2rr n 
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This is independent of $-, so I- is a constant of the motion. 

Resonant amplitudes Ix, Iyor Ii, 10 are found from 

r &(mCvx-vxo) + n(vy-vyo))+ 7& $$ = 0 

L 4 

which can be satisfied by 

afoo -(vx-uxo) = & a~x and -(v y-vyo) 

(21) 

(22) 

A resonance width can be obtained around this reference point 

from 

a2f 
Rs.&- O0 ( *t-I;)2 

aIf 

(23) 

*+) + constant 

which is recognizable as the Hqmiltonian of a pendulum. The resonance 

width (full width) is 

J afnm 
AI+ = 2 7 

f 
00 

where 

I I 
a2f 

f 
00 

zoo. 
aIf 

(24) 

Resonance width decreases with increasing resonance order 

(jml+lnl) and also depends on the amplitudes (Ix) , (Iy) at which it is 
0 0 

evaluated. For sample cases let us choose Ix0 = I 
YO 

such that g, = g 
Y 

= $ 
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so that the resonances lie precisely in the center of the tune spread. 

We find, numerically, that this occurs at Ix = Iy ; 1.35 IO. In Table I 

we tabulate calculated values of the resonance integrals and widths for this 

case for even n,m; Inl+imi ,< a. (These integrals are zero if n or m is odd.) 

2c Resonance Overlap and Chaotic Motion 

In References [5,9] wediscovered that chaotic motion occurs at 

the intersection of two independent resonances. The Hamiltonian at another 

resonance 

J”x0 +kv =p 
YO 

is the same as Equation (20) with new resonance variables (J', J-). If we choose 

"x0' "YO 
at the intersection of the two resonances, we find 

H A g- 
4n 
I- a2foo 2 2a2foo 

-1 

a2foo 
aI 2 'x ' a1 a1 *x*y + >I 2 'y 

2 

X x Y Y 

+ fjk cos(&? $;k) ] 

+ constant 

which is reduced to a coupled pendulums Hamiltonian about the resonance 

amplitudes Ix,, I 
YO 

; which are chosen at the intersection of two resonances. 

In Reference [5] "chaotic" motion was observed near the inter- 

section of low order resonances in this "resonance overlap" region. In 

this note we observe that the size of this chaotic re~gion can be estimated 

by calculating this overlapping area in Ix, Iy space: 

Chaotic Area = AIt . AJ’ ’ ICOS (‘ij)I 

(25) 

(26) 
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where 

lcos 'ijl =~-J$+$--J 

depends on the relative orientation of the resonances in Ix, Iy space 

(cos uij = 1 if the resonances are orthogonal.), and AIt, aJt are the 

full widths of the two resonances. 

The probability that a randomly selected trajectory is chaotic 

can be estimated by the expression 

P(chaotic) 5 f(I,,, Iyo) AI+ AJ+ ICOS uijl 

where f(Ix,, Iyo) is the central probability density. 

In Reference [9] the probability of chaotic motion is measured 

for various cases of resonance intersections in simulation. For these cases 

I x0 = $0 = 1.35 I, and 
(Ixf’J 

- . 

f(Ix. Iy)=-$ e IO 

IO 

In Table 2 we compare the simulation results in which chaotic motion in 

randomly selected trajectories is observed with the above "probability of 

chaotic motion" for various resonance intersections. Qualitative and 

quantitative agreement is good, indicating that the above estimation method 

is fairly accurate. 

The results show all distinguishable crossings of fourth and sixth 

order resonances, eliminating cases with vx = v y. (In the cases with 

I)X = vy an invariant of the motion p, = x'y-y'x exists which reduces the 

motion to 1-D; no 2-D resonance intersections of the type analyzed here 

can exist.) 

(27) 

(28) 
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Eighth order resonances have widths -: that of sixth order 

ones at our parameters, and therefore should show -5 as much chaotic 

motion in intersections with fourth or sixth order resonances as corres- 

ponding 6th order intersections. Simulation results show -l-5% chaotic 

motion in agreement with the theoretical model. 

Higher order resonances have still smaller widths and should 

produce very little chaotic motion, in agreement with simulations. 

The results are in fact fortuitously close. In the model we have 

ignored higher order resonances, which would increase the chaotic region, 

and regions of nonchaotic motion within the resonance overlap ("islands of 

stability"). The errors have fortuitously cancelled. 

2D Small Oscillation Frequency and Lyapunov Exponents 

An important parameter in chaotic motion is the rate of divergence 

of adjacent trajectories. This is given by the Lyapunov exponent in a 

relationship such as 

6 ; cso at 

where 6 is the size of the distance between trajectories, do is an initial 

value and a is the Lyapunov exponent. 

In chaotic motion of coupled pendulums, a is expected to be of 

the same magnitude as the pendulum oscillation frequencies. In a beam-beam 

resonance the equations of motion are 

!g = $I f;;, AI+ 
ll 

-=+Af dAI+ 
de nnm 

&iGF . sin (l/Z? *+) 

(29) 

which gives us a small oscillation w so frequency near fixed points (where 

i' = $+ = 0) of 
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Wso =&$ (30) 

us0 is also tabulated in Table 1 for the low order resonances. 

For the chaotic trajectories of case B of Reference [I ] 

(vx = .245, uy = .12, AV = .Ol) the mean Lyapunov exponent was 

a a .00037 

in the present units. The intersecting low order resonances have aso = .0034, 

.002 and .0012. a is of the same magnitude but somewhat lower as would be 

expected from a more complete analysis of the coupled oscillations. 

In Reference [9] we showed that a = Av in simulations. This is 

expected since w so a: Av in Equation (30). In the same simulations the 

probability of chaotic motion was independent of 4~. This is in agreement 

with our resonance overlap model since resonance widths in the beam-beam 

interaction are independent of AV. 

2E Tune Modulation and the Beam-Beam Interaction 

The Hamiltonian can be modified to include tune modulation by 

the substitution (see Equation (4)) 

"i -+ vi f Ai COS(V, 4 f Qi) 

where vs is the modulation frequency, Ax is the modulation amplitude 

and $ i is the phase. To simplify discussion we choose $x = 4 = 0 and 
Y 

vsx = "SY = vs* 
The single resonance Hamiltonian (Equation 18) becomes 

H = (vx-vxo + AX COS ose)Ix 

+ (v -v 
Y YO 

+ Ay cos use)1 
Y 

Af A t--=+-f 
2~ Tmn cosbvx + wy). 

(31) 

(32) 
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After transforming to the resonance coordinates I', IJI' we obtain 

H= 

(33) 

Af A +00+-f 2~ n mn cos(~ $+) 

where A = mAx t rlAy and a~,, 5 m(vx-vxo) + n(vy-vyo) and we have removed 

I-, +- from the Hamiltonian as nonresonant. We choose a new variable 

$f = Jr+ - 
A Sin(vse) 

v,m 

which removes the time varying term from the first term of Equation (33) 

and changes the cosine argument to 

cos(m 0' + t sin ~~6) = kj 
em 

J,(t) cos(m $'+kvse). (34) 

We have exchanged our single resonance Hamiltonian for one con- 

taining an infinite number of subresonances (see Courant [19] for a similar 

treatment of a different case): 

H = If 6vmn t 

J&7 

(35) 

In each such subresonance this can be rewritten as: 
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Hk z I+ (6vmn 

Jm 

+ kvs) 

(36) 

Af Af 
t -22 + + Jk(+) cos( 2n 5 

The subresonances are spaced vs /Q7 apart in tune, with their central 

amplitudes, found from the solution of 

(6vmn + kvs) AfAo _ 
t--o 

Q7 2n 

spaced in amplitude by 

61+ = Af;;‘& ’ 

If the resonance width is greater than the resonance spacing then 

the "Chirikov" overlap criterion is satisfied[l4], and we may expect 

"stochastic motion" and particle trajectories which travel from resonance 

to resonance. 

This "overlap criterion" is 

J 

afnm Jk(+) 2inJ 
2 s > S 

f" 00 Afo' m 

or (with A = 4rrAv) 

"S 
< 8Av f nm f;'(n2+m2)Jk(-$)2 . 

S 

Absolute values are taken in all expressions. 

(37) 

(38) 

(39) 

(40) 
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In Reference[lO] simulations of the beam-beam interaction with 

tune modulation were reported in which vs was varied while the other 

parameters (vx, vy, AU, ax) were fixed at values (.3439, .1772, .Ol, .005) 

which swept the beam across sixth order resonances. It was found that no 

chaotic motion occurs for modulation period N 3 l/us 7 32 turns. For 

32 < N < 100 a few chaotic trajectories appear while for N 5 200 

(vs 5 .005) large numbers of chaotic trajectories appear and "beam blow-up" 

(RMS amplitude increase) occurs. 

We can estimate the threshold in vs for this case using parameters 

obtained from Table (1) in Equation (40). With A = .Ol, fnm 2 .0027, fo'= .065, 

n2tm2 = z2td2 - - 20, and noting that for A/us small,Jk(A/us) is maximum for 

k = 0 with a value of -1, we obtain vs = .0067 (N = 150) as the threshold 

modulation frequency for resonance overlap, which is in reasonable agreement 

with the beam blow-up threshold observed in simulations. 

Another simulation result is that there is no lower limit in us 

for stochastic beam blow-up; as N + m the same fraction of trajectories are 

chaotic although the rate of beam blow-up and magnitude of Lyapunov exponents 

decreases. This result can be explained in terms of the resonance overlap 

criterion, noting first that 

as us + 0. 

Thus subresonance width (- vsi) and subresonance spacing (- vs) both decrease 

as vs + 0. However since the spacing decreases more rapidly the overlap 

criterion (width > spacing) remains satisfied as vs -L O(N - m). 

3. Discussion and Comparison 

From the simulations and the discussion above, we have determined 

that chaotic motion occurs in the overlap region of intersecting Z-D resonances 
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and that chaotic motion with beam blow-up occurs in simulations with tune 

modulation in which modulation subresonances intersect. No beam blow-up 

is seen in the unmodulated 2-D cases. In these cases the overlapping 

resonances are centered on the same amplitudes so stochastic motion of 

trajectories between the resonances does not lead to RMS amplitude increase. 

However, with tune modulation the subresonances are centered at different 

amplitudes and stochastic motion of particles between subresonances can 

lead to RMS amplitude changes and "beam blow-up". The analysis of the 

motion in terms of resonance overlap is thus able to explain qualitatively 

this phenomenon. 

The results presented in this paper have shown that a simplified 

resonance model with analysis of resonance overlap is capable of qualitative 

and quantitative estimation of conditions for chaotic motion and "beam 

blow-up" in simulations of the beam-beam interaction. We note here that 

Evans and Gareyte [20] have seen evidence for beam blow-up due to tune 

modulation in Fp collisions. The above analysis and simulations [l-13] 

are useful in understanding the observations and extending the results to 

further collider cases. 
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Table 1 Resonance parameters at Ix0 = Iyo = 1.35 I,, Au = .Ol 

Resonance 

m n 

2 0 1 
4th 

.027 

4 o order .014 

4 2 I .0027 

4 -2 6th 
order 

.0027 

6 0 .00091 

4 4 I .00036 

4 -4 .00036 

6 ' oi%r .00024 

6 -2 .00024 

8 0 .000064 

6 4 

0 I 

10th .000021 

10 Order .0000015 

.103 2.88 

.065 2.60 

.096 0.95 .0020 

.034 1.59 .0012 

.065 0.34 .0013 

.103 0.33 .00097 

.027 0.66 .00050 

.079 0.31 .00078 

.051 0.39 .00063 

.065 0.18 .00046 

.lOO 0.082 

.065 0.027 

.00030 

.00009 

*I+ wSO 

.0042 

.0034 
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Table 2 Chaotic Motion at Resonance Intersection 

Tunes 

vx' yy 

.333 , .167 

.250, .125 

.30, .lO 

.25, .167 

.167 , .125 

Resonances 
(' 6th order) 

2vx+2v 
Y 

= 1 

4ux-2vy = 1 

2vx-4vy = 0 

6x1~ = 2 

6vy = 1 

4v, = 1 

4vy+2vx = 1 

4vy-2vx = 0 

4vy+2vx = 1 

4vx-2vy = 1 

4v =1 X 

6vy = 1 

6vx = 1 

4v y-2vx = 0 

%Chaotic %Chaotic 
Motion Motion 

(Theory) (Simulation) 

35 30 

18.8 21 

10.1 12 

11.9 11 

6.4 6 
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Figure Captions 

Figure 1: Results of reversability tests for three non-chaotic trajectories 

Figure 2: Results of a reversability test for a chaotic trajectory 

Figure 3: Number of chaotic trajectories from 100 randomly selected initial 

conditions as functions of vx, \I y at Av = 0.01. In each case 

the resonance intersection is in the center of the tune spread. 

Figure 4: Tune modulation at vx = .3439, vy = .1772, Av = .Ol, ax = -ay = .005. 

Low order resonances swept by the tune spread are indicated. 

Figure 5: Chaotic motion and beam emittance growth as a function of tune 

modulation period N at the tune parameters of Figure 4 

Figure 6: Mean x and y tune shifts Avx, Avy as function of particle amplitudes 

I I 
x' y' (Av,( Ix,Iy), AV~( Ix,Iy) obey the symmetry relation 

Avx(Il,12) = Avy:,(12,11).) 
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